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Introduction

Epidemiological surveys have long demanded standard-
ized methods of measurement, generally referred to as
indices, to facilitate comparison. More recently formalized
clinical audit has extended the need for such methods to
assess average treatment outcome within and between
clinical units. Indices are also being introduced to assess
more objectively the need for treatment to maximize
benefit from limited resources.

In order to assess the provision of orthodontic care in
term of need and outcome, the Index of Orthodontic
Treatment Need (IOTN) (Shaw et al, 1991) and Peer
Assessment Rating (PAR) (Richmond et al., 1992) have
been developed. Widespread use of these indices requires
the training of examiners to establish a uniform standard of
application. Once calibrated to a uniform standard it is
important that consistency is maintained by an examiner
and amongst groups of examiners working together.

Epidemiological or clinical indices may be developed
and applied in one setting. Before such measures are used
in different circumstances, it may be appropriate to
reassess the value of the measure. For example, a measure
may be more successful in a clinical setting, but fail when
used in a field situation such as an epidemiological study
using children. An index developed in the mixed or
deciduous dentition may be unsuited to studying adult
patients.

This paper addresses the statistical issues involved in
the testing of indices and training and calibration of
observers for their use in epidemiological and clinical
work. Two basic terms are used in this context:

1. Observer reliability, is the extent to which a measure-
ment is repeatable under identical conditions. The
term intra-rater reliability referring to consistency of
repeated observation by an observer with himself
whilst inter-rater reliability relates to observations
being consistent amongst a group of observers.

2. Observer validity, is the extent to which a measure-
ment measures what it purports. In a clinical or epi-
demiological context the measurement of validity
takes place against a validity or ‘gold’ standard.
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Measurement Error

Errors in measurement are generally classified as either
systematic or random. If a particular measurement is
persistently under or over rated by an observer, then a
systematic error is introduced. Measurement can be repre-
sented as an equation called the measurement model. If X
is the observed value of the index for a specific case due to
a particular observer, then,

X=T+r+e

where ¢is the true value for that case, r is the systematic error
or bias due to the particular observer, and e is the random
error varying from case to case. It is often assumed that the
random error e does not depend on the general average for
that case, in statistical parlance, 7" and e are independent.
However, this may not be the case as a measurement may
have greater random variation for larger true values.

In a training course the validity of the trainee’s measure-
ment is often compared against the validity standard
defined by the instructor. It is assumed that the instructor’s
criterion is entirely reliable or that the possibility error by
the instructor is small compared that of the trainee. The
instructor score corresponds to 7 in the measurement
model. Where no single individual can be considered
entirely infallible this can be achieved by obtaining a
consensus amongst several trained observers to obtain
definitive scores.

Effects of measurement error

The relative importance of random and systematic error and
their implications depend on the type of study planned. For
example, if different observers examine separate subgroups
in a study, comparison between the subgroups would be
problematical unless is was clear that any systematic bias
between observers was small relative to the magnitude of
difference of clinical interest.

The effect of random error on the outcome measure of a
study is to reduce efficiency. Random errors will not affect
the mean of a sample, but will usually increase the variance
and, hence, the standard deviations. This will not discredit
the result, but will make a statistically significant difference
more difficult to achieve. The sample size requirements will
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be greater for a less reliable measure than one that is more
accurate. If several observers are involved in taking
measurements in a study, systematic bias between
observers also increases variance and reduces efficiency in
the same way.

Increased random error will result in a reduction in the
correlation observed between the variables, a process
called attenuation. Although this bias towards the null
value is generally acceptable, in certain situations it has
been shown that spurious effects may be introduced. For
example in study designs requiring the comparison of
correlation or regression coefficients such as multiple
regression or analysis of covariance, random error may
lead to a statistical analysis showing a difference which
would not be present if a more accurate measurement was
employed (Healy, 1989). Sometimes a treatment effect is
assessed by correlating the difference between pre- and
post-treatment values with the pretreatment value. When
the pretreatment measurement contains a random error an
apparent negative correlation can occur where none would
be present if the random error was removed from the
calculation (Bloqvist, 1974). It might therefore be falsely
concluded that large pretreatment values are associated
with a greater change.

Assessment of measurement error

The remainder of this paper sets out to describe statistical
aspects of the analysis of reliability or validity studies.
Whether one wishes to compare a trainee with an
instructor (validity) or a group of observers (reliability),
each participant should independently observe the same
sample of cases. The choice of sample depends on the
population with which the index is to be used. For example,
when training examiners for an epidemiological study in
schools, the sample should be drawn from the relevant
school population. If the measure is to be used in a new
patient clinic, the sample should be typical of these.

One may wish to show how reliable or valid the index is
when used by a particular type of examiner. In this situa-
tion it is important that more than two observers are used
in order that the variation that exists between all possible
observers is represented in the study.

In carrying out a reliability or validity study, interest may
focus on the abilities of individual observers. Alternatively,
it may be the overall quality of the measurement in a partic-
ular situation. One may be concerned with the ability of
a group of users of an index rather than of an individual
or the comparison of a pair. These are interlinked as poor
reliability may be explained by specific individuals but the
emphasis is different. Questions that might be addressed by
a reliability or validity study include:

1. How close is the trainee’s score likely to be to the
standard score?

2. What is the range of likely differences between the
two observers?

3. How large is the systematic bias of the trainee relative
to the standard?

4. How large is the systematic differences between
observers?

5. How large is the effect of random variation on a future
study?
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In the following discourse the appropriate statistical
methods will be described to address each of these ques-
tions.

The statistical methods used to assess reliability can be
applied with slight modification to the training/validity
situation. In the assessment of reliability it is generally
assumed that both measurements contain the same
random errors relative to the general average or consensus
value, whereas with validity it is generally assumed that the
standard is made without error. Although this may not in
practice be true, all of the random and systematic errors
are attributed to the trainee.

Measurement scales

The statistical methods used to assess reliability and
validity depend on the type of measurement scale being
used. The simplest form of measure is dichotomous in that
each subject can be allocated to only one or two categories
(e.g. male or female). Where a scale has more than two
categories these may be referred to as nominal categorical,
involving a set of unordered categories that are qualita-
tively different (e.g. Class I, Class II, and Class III
malocclusions). Alternatively, it may be ordered with
categories having a natural sequence. An example, being
the components of IOTN where each category represents
an increased degree of severity.

Alternatively, measurement might be on continuous or
interval scales with the distances between two values in
one region of the scale meaning the same as an equal
distance in another part of the scale (e.g. age, weight, or
height). Ordered categorical scales stand between nominal
or unordered categorical scales, and interval measure-
ment, in that, there is generally some notion of distance
between categories. Some ordered categorical scales have
precise definitions of each category that reflect qualitative
difference and hence are similar to nominal categorical
scales. An example of this is the Dental Health Component
of IOTN. Others may reflect an underlying continuum or
latent measure, an example of this being the Aesthetic
Component (AC) of IOTN. These may be considered to
have greater similarity to interval scale measurement.

The PAR index score is derived by adding together a set
of ordered categorical subcomponents. These have been
weighted using a validation standard (Richmond et al.,
1992) to provide a summary weighted PAR score.
Although based on ordered categorical scales, values range
from 0 to above 50. It is expedient, but also reasonable to
consider it as being an interval scale measurement due to
the weighting of components. The process of validation has
made a reduction in malocclusion from 30 to 20 on the
weighted PAR scale equivalent to a change of say 20-10.

Reliability of Interval Scale Measurement

To illustrate the methods, data from a calibration exercise
for the PAR index will be used. This involved the com-
parison of five trainees against an expert and the
comparison of the five trainees amongst themselves. It
includes both elements of validity and reliability studies.
An example of such data for the first two trainees is given
in Table 1.
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TABLE 1  Raw data and calculations

Case Rater 1 Rater 2 Mean Diff
(] (2] a=(1]+[2D2  d&=[]-[2
1 19 2 10-5 -17
2 3 3 330 0
3 18 13 155 =5
4 2 2 2:0 0
5 30 8 19-0 =22
6 3 2 2-5 -1
7 31 30 305 -1
8 6 2 4.0 —4
9 34 31 325 -3
10 7 2 4.5 =5
11 18 10 14-0 -8
12 4 2 3-0 -2
13 43 31 370 -12
14 1 3 2-0 2
15 36 35 355 -1
16 16 8 12-0 -8
17 19 23 210 4
18 24 18 210 -6
19 37 33 350 —4
20 5 6 55 1
21 40 36 38:0 -4
22 0 3 15 3
23 14 14 14-0 0
24 6 4 5-0 -2
25 25 20 225 =5
26 16 19 17-5 3
27 39 40 395 1
28 12 10 110 -2
29 28 23 255 =5
30 10 5 7-5 =5
Mean X, = 164 x;= =36
Variance %, = 1611 = 320
S.D. s, = 1270 5= 5-66
Root mean square error 4-69
Coefficient of reproducibility 13-26
Confidence limits of x, (=57to —1-5)
Limits of agreement (=491t077)
Reliability coefficient 0-89

Graphical presentation

In comparing the scores of two examiners (or a single
examiner on two occasions) it is useful to look at the data
graphically. A common practice is to construct a scatter-
diagram by plotting the pairs of values for each case of
patient (Fig. 1). If the two scores are in perfect agreement,
then the values would be plotted on the dotted line of
equality shown. It is insufficient that the two readings
should be highly correlated, as correlation measures the
strength of the linear relationship. Bland and Altman
(1986) have noted that two scores being of perfect correla-
tion could lie on a line with a positive gradient very
different to the line of equality.

A better illustration suggested by Bland and Altman
involves computing the difference and mean of the pairs of
values being compared. In the example means a; and differ-
ences d; of the two observations have been computed (for
each case). These are given in Table 1 together with their
means (¥, and ¥,) and standard deviation (s, and s,). The
difference for each case d; is then plotted against the mean
of the two raters a; for each case (Fig. 2). The figure shows
the magnitude of the difference between the two observers
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and will also reveal if the observers tend to differ more or
less for cases of differing magnitude. The case numbers
have been plotted so that any large disparity may be iden-
tified back to the specific case. To aid interpretation it is
useful to add three horizontal linesd, d + 2,s,and d — 2.s,
to give the range of the difference between the two scores.
The lines illustrates the systematic differences between
observers. Assuming that the random errors have a normal
distribution, 95 per cent of the points should lie between
the lines d + 2.5, and d — 2.s,. Bland and Altman refer to
the two outer lines as the limits of agreement. In Fig. 2 it
can be seen that the magnitude of the differences tends to
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increase with the average of the score suggesting that the
random error is not independent of the general average
value. This is not surprising as the PAR index is the total
of many subcomponents which can lead to errors due to
omission.

Where a reliability study involves more than two
observers, graphical representation can be provided by
computing the standard deviation and the mean of the
values for each case for all observers. The standard devia-
tions are then plotted against the mean. Such a graph will
illustrate the magnitude of random error and any change as
the general average increases. It does not, however, give
any impression of systematic bias between observers. This
is illustrated for a sample of five trainee raters in Fig. 3.
Again the increase in random error with magnitude is
apparent.

When comparing a trainee with a standard or expert
where it is assumed that only the trainee contributes to
measurement error, the difference between scores should
be plotted against a standard or expert score. This differs
slightly from the plot used for reliability (Fig. 2) where
both observations are considered to have measurement
error relative to the general average value in the measure-
ment model.

Summary statistic—systematic error

To assess how well on average the two observers agree, the
mean of the differences d computed above gives a measure
of any systematic error. This also applies when comparing
a trainee with a standard.

As this mean difference d is calculated from a sample it
will have sampling variation. The confidence interval
needs to be computed to show the precision of d. Provided
the sample size is over 30, a close approximation to the
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TABLE 2 Comparison of trainees with standard in PAR index calibration

Trainee Mean Confidence Paired RMS Limits
diff interval t-test error  agreement

1 -22 (—40to —0-5) 0-0015 37 (-112t073)

2 -5-8 (—83t034) 0-0001 62 (—191to75)

3 =50 (—84to—16) 0-007 74 (=231to137)

4 -11 (=37to 1-5) 0-40 50 (—152t013:0)

5 -21 (=470 0-5) 0-11 52 (-163to12-1)

limits of the 95 per cent confidence interval is given by d =
2.s4/\/n where n is the number of cases in the study, s, is the
standard deviation of the differences. In the example in
Table 1 the values for the mean difference is —3-6 with 95
per cent confidence limits —5-7 to 1-5. The interpretation of
this is that in any future series of similar cases the system-
atic error between these two observers will be between
these two values with probability 0-95. It is important that
the magnitude of limits is below what might constitute a
clinically important difference. A probability of 0-95 may
be too stringent in which case a confidence limit with say
0-9 or 0-8 probability might be used. In the example it can
be seen that examiner 1 scores systematically more than
examiner 2 confirming the impression of Figs 1 and 2.

An alternative approach is to use a paired t-test to
examine if the systematic bias is statistically significantly
different from zero. The test statistic is computed as 7T = d.
\/nls,. This is equivalent to examining whether the confi-
dence interval does not include the zero difference. Such
an approach is unfortunately flawed. Where random varia-
tion is greater the term s, will be larger and the test statistic
T smaller. This makes it less likely that a t-test will imply
the bias is statistically significant. However, where the
random variation is greater, the confidence limit will be
wider suggesting the possibility of systematic bias of a
greater magnitude. This illustrates one advantage of confi-
dence limits compared to a significance test. This issue is
illustrated in Table 2 which shows the comparison between
a standard and five trainee raters. On the basis of the ¢-test
it might be concluded that examiner 1 showed greater bias
than examiner 5. Examination of the confidence limit
suggests that the systematic bias of examiners 1 and 5 rela-
tive to the standard are little different. In a calibration
study it is therefore suggested that systematic error is
assessed by comparing confidence limits with a range
based on clinical criteria.

Summary statistic—random error

To quantify random variation, a summary measure that is
often recommended is the root mean square (RMS) error.
This is given by the formula

(24
i=1

2n
where d; is the difference between the two raters. The RMS
error is an estimate of the standard deviation representing

the measurement error of a single measurement s,
provided there is no systematic bias. Where this is present
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the RMS error will over-estimate the standard deviation
by including both bias and random error.

A closely related quantity is the coefficient of repro-
ducibility. It has been adopted by the British Standards
Institute (1979) and is given by 24/2 X RMS error. In indi-
vidual clinical measurement this has an interpretation
when considering the difference between two measure-
ments. In the absence of any underlying change 95 per cent
of differences will generally be less than the coefficient
of reproducibility. Hence, if two replicate readings are
made on the same subject and the difference is less than the
coefficient of reproducibility, then there is no evidence of
change beyond what might be explained by measurement
error. It is therefore desirable that the coefficient of repro-
ducibility is less than what is deemed to be a clinically
important difference if the measure is to be used for
clinical decision making. Such a stringent requirement is
not necessary for research measurement where we are
concerned with samples rather than decision making on a
single case. In our example RMS error is 4-69 which gives a
coefficient of reproducibility of 13-26. This suggests that
differences of less than 10 by these examiners could be
explained by measurement error. Where more than two
observers are involved the RMS error may be estimated
using analysis of variance.

The above approach tends to obscure the systematic
error which is often present in clinical measurement. An
alternative approach is to consider the limits of agreement
byd + 2.s,and d —2.s,. These were calculated above when
constructing Fig. 2. Suppose the first rater observes a value
X, then the second observer’s value will be in the range
from X; + d — 2.5, up to X; + d + 2.s, with probability
0.95. Likewise if the second rater observes a value X,
then the value for the first observer should be in the range
X, —d — 2.s,up to X, — d + 2.s,. In the example if the first
rater’s value of PAR is X then the second will be in the
range from X — 12 to X + 7. This approach can give mean-
ingless negative values when applied to specific value if the
data does not satisfy the assumption of being normally
distributed.

The RMS error and coefficient of reproducibility
provide a single figure for an overall assessment of a
measure whilst the limits of agreement are more suited to
comparison of specific pairs of raters. The latter method is
better for addressing the comparison of a trainee with a
standard.

The reliability coefficient

The methods described above assess measurement error in
the units of the original measurement. Where variation
between subject is comparatively large, random variation
of particular magnitude will be less important than in a
sample with small variation. For example, in a study of
temperature measurement of human subjects the coeffi-
cient of reproducibility may be small in absolute terms, but
the variation between subjects is also limited.

An alternative approach, applicable to research studies,
is to relate the magnitude of the measurement error to the
variability of the population being studied. Such a measure
is the reliability coefficient (also confusingly called the
intraclass correlation coefficient) that is defined as
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2
R=1- %
where s°x is the observed variation of the study sample and
s2 is the variation of the measurement error discussed
above. Where there is no measurement error, that is s
equals zero, the coefficient of reliability equals 1 whilst if
measurement error explains all the variation in the data,
that is s; = s°x; the reliability is zero. An estimate of the
reliability coefficient is given by the formula:

2 1/.2
2'sa - /ZSd

R =57+ (RMSEY

where s is the variance of the average of the two value for
each case, s is the variance of the differences and RMSE is
the root mean square error. Using this formula the
estimate of R in our example is 0-89.

All analyses and graphics described above involving
two observers can be easily obtained using any of the
popular spread sheet software programs for IBM PC
compatible or Apple Macintosh computers.

The interpretation of the reliability coefficient

The reliability coefficient has several useful properties in
the assessment of some of the effects of random variation
discussed above. The sample size required in a study with
outcome measures having reliability R is increased by a
factor I/R compared to a study with an entirely reliable
measure. The attenuation of a correlation coefficient can
also be estimated from the reliability. For correlation r
between two measurements X and Y, say each with relia-
bility R, and R, the observed correlation will be
under-estimated by a factor \/R,. \/R, compared to the
correlation between X and Y if there was no measurement
error. These properties are useful as they give an estimate
of the gain that may be achieved by improving the accuracy
of measurement. For example, if limited numbers of
patients are available for inclusion in a research project the
reliability coefficient gives an estimate of the possible gain
due to investment in improved measurement. It might be
concluded that the measure is sufficiently reliable and
therefore there is little benefit in attempting to make
improvements. Alternatively, the decision may be made to
use replicate measures of each case to improve reliability
and save the expense of recruiting additional patients into
the study.

It is apparent that the effect of random error depends
on the context. As a consequence it is difficult to generalise
as to what constitutes an acceptable level of reliability.
Fleiss (1986) tentatively suggests that values of R below 0-4
or so might constitute poor reliability, between 0-4 and 0-75
fair to good, whilst above 0-75 represent excellent. These
guidelines were suggested for use with the lower 95 per
cent confidence limit of the reliability coefficient in order
that account could be taken of the sampling variability.
Calculation of this confidence limit for the reliability
coefficient is beyond the scope of this article. Interested
readers are referred to Fleiss (1986) who gives a compre-
hensive description for intra-observer and inter-observer
reliability studies.
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For more than two observers estimation of the relia-
bility coefficient is generally based on an analysis of
variance. Details of computation of the reliability coeffi-
cient are not given here and interested readers are referred
to Fleiss (1986). For our example the estimate of the relia-
bility coefficient for all five trainees obtained from analysis
of variance is 0-89 with lower one-sided confidence limit of
0-77. This suggests that measurement error will cause only
a slight loss of efficiency in a research study.

The reliability coefficient is a useful indication of the
information contained in a measure. Whilst it has been
suggested for making comparisons of the quality of pairs of
raters (Kingman, 1986), calculation of limits of agreement
is simpler and more informative, as systematic bias is also
taken into consideration.

Reliability of measurement of change

In the assessment of treatment, interest sometimes focuses
on the change of an index from start to finish. For example,
it has been suggested that reduction and percentage reduc-
tion in PAR score provides a useful measures of outcome.
It follows that reliability should be estimated for these
measures particularly as the underlying variation in the
sample of a measurement of chance tends to be much less.

Reliability of Categorical Measurement

The assessment of reliability for categorical measurement
has many parallels with that for interval data. In Table 3,
data from a reliability exercise for two examiners using the
Dental Health Component of IOTN, a 5-point ordered
categorical scale, is listed. To compare either a rater with
the standard or a pair of raters a two-way table should be
drawn up summarising the pairs of values (see Table 4). It
is also worth calculating the proportion or percentage in
each cell (these are given in brackets). If both observers
were in perfect agreement all the frequencies would be on
the main diagonal of category agreement that runs from
top left of the table to bottom right. Examination of the
table may also reveal categories that are being confused by
observers for example in Table 4 the observers would
appear to confuse categories 3 and 4. Identifying the
specific cases involved may eliminate differing interpreta-
tion by observers and, hence, improve the category
definition for future use.

Assessment of bias

As well as examining the cell frequencies it is also worth
comparing the column and row totals which give the
frequency with which each examiner chose a specific
category. If one rater uses a specific category more often
than another, this is an example of systematic bias for a
categorical variable. For the dichotomous case McNemar’s
test for comparing proportions for matched pairs (see
Siegel and Castellan, 1988) may be applied to assess bias
statistically. Formal statistical testing of this for nominal
scale data is not straightforward. For ordinal scale measure-
ment the Wilcoxon matched pairs test available in many
statistical software packages can be used to test if the
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TABLE 3 Reliability data for two examiners
using Dental Health Components of IOTN

Case Rater 1 Rater 2
1 4 4
2 2 2
3 4 3
4 2 2
5 4 5
6 3 2
7 3 4
8 2 2
9 4 4

10 2 2

11 4 4

12 4 2

13 4 2

14 2 1

15 4 4

16 4 3

17 4 4

18 4 4

19 5 5

20 2 2

21 4 4

22 2 1

23 4 5

24 2 1

25 4 3

26 3 3

27 5 5

28 3 2

29 5 5

30 2 2

TABLE 4 Two-way table summarizing reliability data from Table 3

Rater 1
DHC Score
1 2 3 4 5 Row total
Rater 2 1 — 3 — — — 3
D HC Score (0-10) (0-10)
2 — 6 2 2 — 10
(0-30) (0-07) (0-07) (0-33)
3 — — 1 3 — 4
(0-30) (0-10) (0-13)
4 — — 1 7 0 8
(0-03) (0-23) (0-0) (0-27)
5 — — — 2 3 5
(0-7) (0-10) (0-17)
Column — 9 4 14 3 20
Total (0:3) (0-13) (0-47) (0-10)
Proportions given in brackets
Unweighted kappa 0-42
Lower 95 per cent confidence limits 0-23
Weighted kappa with linear weights 0-62
Lower 95 per cent confidence limits 0-48

median difference in rater’s scores differs from zero. In our
example the Wilcoxon test gives P = 0-055. Whilst this is not
statistically significant at a 0-05 significance level, it is a basis
for concern regarding bias. Examination of Table 4 reveals
that on 10 occasions examiner 1 scored greater than exam-
iner 2, but only on three occasions does the reverse occur.

As with interval scale measurement it could be argued
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that a confidence interval for the median difference
between raters should be used in place of a statistical test.
Although a confidence interval can be calculated, this data
is unlikely to be helpful as only whole or half units are
available. Fortunately, it is difficult to conceive examples
where a systematic difference might be statistically signifi-
cant, but not clinical important unless the sample size is
large. Conversely, a result having clinically important bias,
but not being statistically significant might occur, but only
where agreement between the two raters is poor.

Assessment of agreement

To assess reliability, the choice of summary statistic is often
the percentage or proportion of agreement calculated by
considering the percentage of frequencies on the main
diagonal of the table. Some agreement between observers
would occur by chance and this is substantial where one
category has high prevalence for both observers. The
agreement that is obtained by chance for each category is
obtained by the formula.

Row total ® Column total
Grand total

in the same way as expected frequencies are calculated in
the Chi-squared statistic. In the example in Table 5 the
observed frequencies in each cell are no larger than what
would be expected by chance. Although percentage agree-
ment is high (75 per cent), the measurement has little value
as agreement could be due to chance.

TABLE 5 An example of high percentage agreement
due to chance

Rater 1 Total
Rater 2 X+ X-
X+ 10 50 60
X— 50 250 300
Total 60 300 360

Percentage agreement = 75% Kappa =0

The Kappa statistic

Cohen (1960), devised the Kappa statistic to deal with this
situation by subtracting the chance expected agreement
from the observed agreement and then rescaling. Kappa is
defined as

Po — Pe
L= pe
where p, = observed proportion of agreement and p, =
chance expected proportion of agreement. It has useful
properties being scaled so that complete agreement
between the two observers gives Kappa equal to one.
Alternatively, where observed agreement is no better than
that obtainable by chance, Kappa equals zero.

A more detailed description is given in the appendix for
mathematically minded readers. A program that will run
on an IBM compatible machine is available from the

K =

Epidemiological Surveys 145

authors for computing Kappa and the related weighted
Kappa statistic described below.

Weighted kappa

A scale which has ordered categories implies that disagree-
ment between different pairs of categories have different
seriousness depending on their positions in the sequence.
Cohen (1968) proposed a modification of Kappa in which
weights were assigned according to the degree of the
agreement. On the main diagonal a weight of 1 is given and
at extreme values a weight of 0. Intermediate values are
given partial credit with a value between 0 and 1. Weighted
kappa is defined by

= Pow) = p(w)
Y 1=pdw)

where p,(W) is the proportion of ‘weighted agreement’
observed and p,.(W) the proportion of weighted agreement
expected. As with kappa, a weighted kappa of 1 corre-
sponds to perfect agreement, whilst a value of zero implies
that observed agreement is no better than that obtained by
chance.

Ideally, the choice of weights should be made prior to
the study, based on the clinical or scientific implications of
different forms of disagreement, although in practice it is
difficult to obtain a consensus expressed in quantitative
terms. Because different choices of weights give rise to
different values of weighted kappa, tailoring weights to a
specific situation may be perceived as deception as weights
could be chosen to minimize disagreement. Therefore, it is
generally advisable to use one or two standard weighting
schemes referred to as quadratic and linear weights, unless
there are strong reasons for doing otherwise. Details are
given in the appendix. Both assume the distances between
adjacent categories to be equal. Quadratic weights, first
proposed by Cohen (1968), have been shown by Fleiss and
Cohen (1973), to make the kappa statistic approximately
equal to the reliability coefficient for large samples. This
would suggest that these quadratic weights should be used
where a scale has large numbers of categories or that it is
realistic to think in terms of an underlying continuum as
say with the AC component of IOTN. Linear weights
proposed by Cicchetti and Allison (1971), would appear to
be more suitable where numbers of categories are small
and tend to differ qualitatively. An example of linear
weights is illustrated for a five point scale such as DHC of
IOTN in Table 6. The value of kappa obtained with these
weights for the data in Table 3 is 0-62 whereas the
unweighted kappa is 0-42. Whichever choice of weight is

TABLE 6 Linear weights for weighted kappa for a 5-point scale

Rater 1
1 2 3 4 5
Rater 2 1 1 0-75 0-5 0-25 0
2 0-75 1 0-75 05 025
3 0-5 075 1 0-75 0-5
4 0-25 0-5 0-75 1 0-75
5 0 025 0-5 075 1
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made, this should be made clear in any research report. It
is important to note that unweighted, linear weighted and
quadratic weighted kappa are not comparable. The value
of unweighted kappa is less than that of weighted kappa
with linear weights which is in turn less than that with
quadratic weights.

Interpretation of kappa and weighted kappa

As with a reliability coefficient it is advisable to compute
confidence limits. For kappa the concern is generally that a
value of kappa is above a specific level and, hence, a lower
95 per cent confidence limit should be computed. This is
available from the software described using the procedure
described by Fleiss (1982). For our example, lower 95 per
cent confidence limit is 0-48 showing that kappa is above
this value with a probability of 0-95.

Whilst a value of kappa equal to 1 or zero has an easy
interpretation, the intermediate values are more difficult.
For nominal scale measurement it has been suggested
(Landis and Koch, 1977) that a kappa of over 0-8 indicates
good agreement, over 0-6 substantial, over 0-4 moderate,
and that above 0-2 fair and below 0-2 poor. It is suggested
that these criteria be applied to the lower 95 per cent con-
fidence limit so in the example above the agreement can be
considered to be moderate. As with those suggested for
reliability these guidelines should not be used too rigidly,
being based largely on experience rather than any precise
justification. Where an index is to be used to make deci-
sions regarding patient treatment a much higher level of
reliability is likely to be required than for an index used for
research or audit on groups of patients. They have also
been suggested for use with weighted kappa (Fleiss, 1981)
although here they may seem more arbitrary as the change
of weighting scheme might move the value of weighted
kappa into a different band.

Although interpretation of a single kappa value has
problems, it can be used effectively in a comparative way.
If more than two observers are involved in a reliability
study, comparisons may be made using the kappa statistic
for pairs of raters to identify groups of homogeneous or
aberrant observers. Alternatively kappa may be used to
assess intra-observer reliability to compare the consistency
of each observer. This requires each observer to assess the
same or equivalent samples.

As with reliability coefficients the value of kappa
obtained relates to a particular population being adjusted
for the underlying variability of the sample. For example,
the value of kappa for a measure obtained when consid-
ering a clinical sample may be very different to that from
an epidemiological survey. Although this may be in part
due to the differing circumstances in which measurement is
made, differing frequency distributions in either sample
will also affect the value. With frequency distributions that
differ greatly, values of kappa are not directly comparable.

Validity and categorical data

Although kappa is a measure of reliability, it can be used as
a measure of agreement in validity studies. For dichoto-
mous data validity is generally assessed using the statistics
sensitivity and specificity (Nuttal and Davies, 1988). These
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terms are generally described in the context of a diagnostic
test. Sensitivity is the proportion of positive diagnosis
under the standard or definitive value that are detected by
the trainee as being positive. Specificity is the proportion of
the negative diagnosis under the standard that is detected
by the trainee as being negative.

The ideas of sensitivity and specificity can be expanded
to a scale with more than two values, although large
number of values are difficult to interpret. To assess the
validity of a trainee, applying the index in treatment
decision making, categories might be grouped together.
For example, for the DHC component of IOTN the values
of 4 and 5 are considered to represent treatment need,
whilst 1, 2 and 3 suggest no or only slight need (Richmond
et al. 1994). The sensitivity and specificity for an individual
operator could then be determined. For example, if the
values of the first rater in Table 4 is the standard and the
second the trainee, then sensitivity = 12/17 = 71 per cent,
whilst specificity = 12/13 = 92 per cent. Collapsing the data
in this way can provide a useful interpretation for decision
making, but is no substitute to collecting and analysing
ungrouped data. Dichotomizing the scale after the data are
collected is in general felt to give a more reliable dichoto-
mous measure, than permitting the observer to use two
broad categories. For epidemiological work using ordered
categorical scales it is better to encourage use of a
complete scale as this provides more information for statis-
tical analysis.

Conclusions

The adoption of standardized methods of measurement or
indices is suggested as a means to provide comparable data
in different epidemiological, clinical or audit studies. It
must, however, be recognized that, even with well defined
guidelines, examiners can be unreliable. Careful training
and calibration provides no guarantee that results will be
comparable due to differences in experience, personal
biases regarding severity or individual aptitude. For this
reason research studies should be designed to minimize the
adverse effects of measurement error.

In general, if several observers are to be involved in a
study it is advisable to avoid situations in which different
observers assess different subgroups that are to be
compared. For example, if two different observers
examine different treatment groups, the suspicion that
group difference reflect observer bias is likely to remain,
making the study unconvincing, however good the calibra-
tion of the observers. Similar proportions of each subgroup
should be examined by each examiner obtaining balance
between examiners and study variables. By doing this the
possibility that any examiner bias is confounded with
group differences is removed. This might be obtained by
random or systematic allocation of cases to observers.
Unfortunately, situations can be envisaged when this is
difficult to achieve, an example being studies comparing
different regions or disparate health districts and clinical
units. Similarly, where a single examiner observes all cases
they should strive, where possible, for a balanced approach
by avoiding examination of all cases of one treatment
group prior to another otherwise any drift in measurement
practice may be confounded with study variables. Where
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this is not possible intra-rater repeatability exercises
should be carried out at regular intervals to check and
curtail any systematic drift over time.
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Appendix: kappa and weighted kappa

Using the notation in Table 7 kappa for dichotomous
data is

K = (Pn + Pzz) - (P1+P+1 + P2+P+2)
1- (PHPH 1 P2+P+2)

TABLE 7 Algebraic notation for two table as used in the appendix

Rater 1
1 2 . j . n Row total
Rater2 1 Pu P2 . Dj . Pnt P+
2 P2 P2 .- P .- Pn2 D+2
J Py Py - Dii S P+
n Pin Pon - Pin - P P+n
Column total  py. yZn D+ Pns 1

For nominal categorical data a kappa coefficient can be
defined as a generalization from the dichotomous case

; Pii — ; Pi+P+i

1- 2 Pi+P+i

i=1

K

For weighted kappa the weights w;, for each pair of
categories i and j, are restricted to the interval 0 <= w; <1
with w; 5 w;. The observed proportion of agreement is
then

n n

po(w) = 2 2 WiDij

i=1j=1
pe(w) = E{ 21 WiPi+D+
i=1j=

where p; are the observed cell proportions and p;. and
p+; are the observed marginal proportions. Weighted
kappa is given by

W) —pw)
" 1- pe(w)

If w; = 0 for i # j, then k,, becomes equal to unweighted
kappa as given by above. Two standard weighting schemes
for weighted kappa that assume that the sequence of
categories equally spaced points on an integer scale are
defined by the following formula. For each pair of
categories i, j of a scale with n categories

__ =)y - wei
wy=1- m —quadratic weights
wi=1- H —linear weights.



